PHYSICAL REVIEW E

VOLUME 51, NUMBER 6

JUNE 1995

High-accuracy Trotter-formula method for path integrals

K. E. Schmidt and Michael A. Lee*
Department of Physics and Astronomy, Arizona State University, Tempe, Arizona 85287
(Received 7 November 1994)

Path integrals are a powerful method for calculating real time, finite temperature, and ground
state properties of quantum systems. By exploiting some remarkable properties of the symmetric
Trotter formula and the discrete Fourier transform, we arrive at a high-accuracy method for removing
“time slice” errors in Trotter-approximated propagators. We provide an explicit demonstration of
the method applied to the two-body density matrix of *“He. Our method is simultaneously fast, high
precision, and computationally simple and can be applied to a wide variety of quantum propagators.

PACS number(s): 05.30.—d, 03.65.—w, 02.70.—c, 67.20.+k

Recent years have seen large scale computational meth-
ods that employ a “propagator” such as exp(——il{;}) or
exp(—EfT) to carry out quantum time evolution [1,2] or
calculations in quantum statistical mechanics [3,4]. This
paper deals with analysis and enhancement of such prop-

agator schemes when they are based on approximations
like the Trotter formula [5],

e—‘rH = lim [e—‘rT/Ne—rV/N]N . (1)
N —o00

(T is the kinetic energy and V the potential energy op-
erator. The “time” variable 7 is either 1/kgT or it/h.)
We will show that a wide class of product approxima-
tions have errors proportional to only the even powers
of 1/N and use this property with a Romberg-type inte-
gration scheme to successively eliminate time-slice errors
to very high order. This approach permits substantial
reduction of N, extending the variety of problems that
are computationally accessible.

For numerical applications of Eq. (1) with finite IV,
errors depending on the time slice, A7 = 7/N, enter
through the break up,

e—A‘rH ~ e—AfTe~A‘rV, (2)

which is in error at the level of (A7)2. The error accu-
mulated in the N factors in the entire propagator is of
order 1/N. A superior break up was given by Feynman
[6] who symmetrized the incremental propagator,

e ATH o= VAT~V = Us(AT). (3)

The error of the symmetrized propagator, Ug, is order
(AT)3. This yields a 1/N? error in a Green function or
density matrix approximated by successive products of
the form

e H ~ Us(r/N)N

—%VevA-rTe~ArV e e ATV o —ATT — %V.

(4)

=e
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Many authors have offered error analyses similar to the
above [4,6,7]. However, we found no attempt to exploit
the error structure with standard extrapolation methods
[8] to eliminate the low order errors resulting from dis-
cretization. For example, an operator without the 1/N?2
error is

e ™ ~ [4Us(7/2N)*N — Us(r/N)N] /3. (5)

Implementing this numerically requires up to three times
as much computation and double the storage, but the
remaining error is of order 1/N*%. As we show below, this
process can be easily generalized so that each time the
number of points is doubled, the error is again reduced
by a factor of N2. This enhanced error reduction occurs
only when an asymptotic expansion for the error in the
break up formula contains only powers of 1/N2.

Hatano and Suzuki [9] showed that the break up into
N symmetric propagators, i.e., Eq. (4), does not include
odd-order powers of A7. Their proof involved an infinite
expansion of commutators. We will show here that this
error structure is more general. Our proof is based on the
observation that if the propagator formed of N products
is an even function of NV its error expansion necessar-
ily contains only powers of 1/N2. Given any break up,
e ™H ~ U(’r/N)N, evenness in N requires that it be
invariant under N — —N, i.e.,

/NN =[U(-r/N)]7N. (6)

From this we see that an approximate propagator con-
structed of N products, each of which satisfies a “unitar-
ity condition,”

U(AT)U(—AT) =1, (7)

will have an asymptotic error expansion with only powers
of 1/N2.

The simple break up given by Eq. (2) fails to satisfy
the unitarity condition. The symmetric propagator, Ug,
does satisfy this as do several others, including the exact
propagator, e~27H#  and certain rational approximations
such as (1 — AT7H/2)/(1+ ATH/2). Indeed, if U(AT)
does not satisfy the unitarity condition, then the con-
struction U(A7/2)U~1(—A7/2) does.
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To illustrate the successive elimination of error terms in
Trotter-approximated propagators, we apply our method
to the calculation of the two-body density matrix of
helium atoms and employ the symmetric break up of
Eq. (3). The real-space two-body density matrix is a
function of 12 coordinates. Eliminating the center of
mass in the usual fashion leaves a function of six coordi-
nates. The Bloch equation in these coordinates is then

0
oB
with the boundary condition p(7,7', 3 — 0) = §3(7—7").
The Hamiltonian operates on the unprimed coordinates,
m is the reduced mass and v(r) is the central two-body
potential which we take to be the HFDHE2 potential
(a potential for He using the Hartree-Fock dispersion
method) of Aziz et al. [10].

The usual partial wave decomposition can be used to
expand in Legendre polynomials of the cosine of the angle
between 7 and 7/,

p(7, 7', B), (8)

P v (7 7,8) = -
(_E'r*nv +v(r))pr,r ,8) =

Z(2l+1)p1 nB) peerty. (9)

4mrr!

The lth partial wave density matrix then satisfies a radial
Bloch equation,

( " [;:2 l(lr-l-l)]+ (r)) PAGEN¢)

0
= _'a_ﬁ—pl (7‘, Tl,ﬁ) (10)

with an analogous one-dimensional § function boundary
condition. When we refer to the “potential” for p; below,
we will implicitly include the r—2 term.

We have solved Eq. (10) for temperatures below 1 K,
but we present results at 40 K because this temperature
was selected in the bulk “He calculations of Ceperley and
Pollock. They have discussed techniques employed to
obtain the accurate two-body density matrix needed in
their path integral Monte Carlo calculations [3] and adopt
the “matrix squaring” method of Klemm and Storer [11].
We present numerical results for [ = 0, but our method
actually improves for larger ! values and we routinely
incorporate ! > 40 in our construction of the full two-
body density matrix.

Having specified our problem formally, we must de-
velop a discrete representation for numerical solution.
Following Egs. (3) and (4), we break up the propaga-
tor for p; into IV equal slices of 8 = 1/kgT = NAT and
choose a uniform spatial grid, so that the jth radial dis-
tance is jAr, with 1 < j < M — 1, and MAr is large
enough that the density matrix is numerically zero at
that end point.

Evaluating any short-time propagator at the grid
points produces a short-time density matrix,

m = (3|U|m). (11)
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The discrete representation of the full density matrix be-
comes a series of matrix multiples,

Z Ujnin-1 " Ujz 51 Ujy Go- (12)

J1,d2s--

pl(jN:jO:ﬂ) =

HIN-1

A small A7 = 1/NkgT increment is equivalent to a large
temperature so there are a variety of high temperature,
semiclassical approximations that may be employed [3]
to obtain the initial matrix in Eq. (11). However, simply
evaluating a high temperature density matrix at the spa-
tial grid points will not in general produce a matrix which
satisfies the unitarity condition, Eq. (7), even if the orig-
inal continuous density matrix (r|U|r’) does satisfy this
condition.

Klemm and Storer [11] developed their “matrix squar-
ing” method based on Eq. (12). If N is a power of 2,
then Eq. (12) can be broken up into log, IV factors, each
one being the square of the previous one. Unless the uni-
tary condition for the matrix Uj,, is satisfied, the product
approximation, Eq. (12), does not have the 1/N? error
structure.

A discrete space representation of the symmetric prop-
agator that does satisfy the needed unitary condition can
be calculated by Fourier transforms on a discrete basis.
Examining Eq. (11) for the symmetric propagator, we see
that the potential factors in Eq. (3) are diagonal in the
real-space basis, but the kinetic energy operator is not.
We insert a plane wave basis on Mdiscrete k points |ky,)
[with k,r; = mnj/M and (jlk,) = sin(mwnj/M)+/2/M].
The matrix element of a single symmetric propagator of
Eq. (11) is then

Usm = Y (ile™ ¥ V0 ky)

n

k2 -
xe AT 2 (kple” 3V ) |m). (13)

This form regains the unitarity property, Eq. (7), and
the products, Eq. (12), have even-order errors suitable
for accurate extrapolation.

Using the unitary Uj,,, the products for Eq. (12)
can be carried out with direct matrix multiplication,
the Klemm-Storer matrix squaring technique, or using
fast Fourier transform (FFT) methods [2]. Our form of
Ujm is well suited to the FFT method. This process
is initiated with the infinite temperature density ma-
trix pi(Z, J,0) = 6;;/Ar. Multiply it by exp [——%V(rm)] ,
then carry out a Fourier sine transform from space points
Tm to points k,. Multiply that result by the kinetic en-

27,2
ergy operator exp (—AT%), then Fourier transform

back to the real-space points, r;, and finally multiply by
exp [—47V (r;)]. Repeat N times.

While our procedure for producing a discrete repre-
sentation of the full propagators retains the unitarity
property, it is nonetheless an approximation with error
terms depending on the spatial grid size. We can show
that this particular discretization is especially accurate
because (perhaps surprisingly) each matrix product (in-
cluding the FFT) is equivalent to using trapezoidal rule
integration. The Euler-Maclaurin error formula for the
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trapezoidal rule [12] states that the asymptotic expansion
of the error is proportional to the odd derivatives of the
function at the end points, plus a remainder term. All of
our end point derivatives are zero to machine accuracy.
Thus our grid errors rapidly become negligible once a suf-
ficient number of integration points are employed, about
256 points in our case. Table I shows that spatial dis-
cretization errors do not undermine our assertions about
the accuracy of extrapolating away time-slice errors.

We now detail the extrapolation in the discretiza-
tion of “time” to achieve high accuracy and a result-
ing density matrix that is readily calculated to a pre-
cision of 107° using 64 bit arithmetic. The extrapo-
lation formula of Eq. (5) illustrates the elimination of
quadratic errors. Generalizing this is completely equiv-
alent to performing the calculation for several differ-
ent values of the discretization N, then fitting to a low
order polynomial in 1/N? to predict the exact result.
We adopt a procedure exactly parallel to the Gear or
Bulirsch-Stoer [8] methods for doing polynomial error es-
timates of integrating differential equations. This proce-
dure involves the successive evaluation of the function
for N = 2,4,6,8,12,16,24,32,... points and a polyno-
mial extrapolation is carried out until a prescribed error
tolerance is met. We found it somewhat more efficient
to break the full time interval into one to five equal seg-
ments, depending on the initial r’ value, and in each seg-
ment apply the Gear prescription.

For illustrative purposes here, we drop the Gear pro-
cedure in order to graphically display the error versus
time-step accuracy of the calculation. We start with N
time slices, and repeat the calculation with 2NV, 4N, 8N,
and 16N slices. Then Eq. (5) can be easily generalized
to eliminate 1/NZ%, 1/N%, 1/N® and 1/N® errors. Fig-
ure 1 is a plot of the resulting errors in po(r,r’,3), for
7' =3 A and 8 = 0.025/K, with N = 16 initially. The
logarithmic plot clearly illustrates that each removal of
an additional power of 1/N? increases accuracy by nearly
two orders of magnitude. The ultimate accuracy possi-

TABLE I. Comparison of the ! = 0 radial density matrix
po(r,r',B) at B = 0.025/K, for various numbers of integration
points, M, and step sizes, Ar. The error tolerance for time
extrapolations was set at 107°. All lengths are measured in
angstroms. Our value of %%/2m is 12.1192393 A% K.

r r’ M Ar pO(Ty 7"1 ﬁ)
2.4 2.0 512 0.05 0.017939 355
2.4 2.0 512 0.025 0.017939 355
2.4 2.0 256 0.05 0.017939 355
2.4 2.0 128 0.10 0.017939 355
2.4 2.0 64 0.20 0.017939 142
24 2.0 32 0.40 0.017907 811
2.6 3.2 512 0.05 0.357 527511
2.6 3.2 512 0.025 0.357 527511
2.6 3.2 256 0.05 0.357527511
2.6 3.2 128 0.10 0.357527 505
2.6 3.2 64 0.10 0.357 527 500
2.6 3.2 32 0.20 0.357 527 499
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FIG. 1. Error after eliminating successive powers of 1/N?2.

ble is limited by the word length of the computer and is
about half of the accuracy of the hardware. The top curve
in the figure also illustrates that normally acceptable ac-
curacy is achievable in calculations with discretizations
as coarse as N = 16 and N = 32 with application of
Eq. (5) to remove quadratic errors.

In Table I we provide a tabulation of pg to illustrate
the error incurred due to k-space and r-space grid sizes.
We see that the grid quickly becomes sufficiently dense
that the error in the integration is essentially zero. The
remarkable insensitivity of the result to the grid size fol-
lows from the Euler-Maclaurin error expansion for the
trapezoidal rule.

We have performed the above calculations on other
standard two-body He-He potentials, including the
Lennard-Jones, hard sphere, and Morse potentials. All
assertions in the above analysis remain true as long as the
potential is sufficiently repulsive that the density matrix
and its derivatives at the origin are small enough to be
numerically ignored.

The use of the FFT is not essential to the extrapolation
procedure, but because of the special form of the matrix
Ujm in Eq. (13), the matrix products needed in Eq. (12)
can be efficiently carried out. Matrix squaring is an al-
ternative to the FFT, but the computational complexity
of these approaches is different. Let Ns be the number of
points in the spatial discretization and Nz be the number
of terms in the break up formula. Our FFT method re-
quires Ny N2InNg operations. Matrix squaring requires
N3InNr operations. The NZ in each of the above comes
from needing p(r,7’,3) at N5 x Ng space points. This
does not take into account the bandedness of the density
matrix. For a given 7', the only nonzero values of p are for
positions r that are within a few thermal wavelengths of
r’. (This range is easily estimated assuming free particle
propagation.) If we label the number of nonzero values as
Np, then the above estimates change to Ny NsNgIlnNp
for FFT, NgNiInN7 for matrix squaring. In any partic-
ular problem, it is likely that FFT will be successful, but
a combination of FFT and matrix squaring followed by
extrapolation will be optimal.

We have also investigated constructing the density ma-
trix from an eigenfunction expansion, but found this im-
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practical except when the eigenfunctions were known an-
alytically. When numerical eigenfunctions are needed,
the eigenfunction solver will (it is our experience) intro-
duce unacceptable discretization errors. The complex-
ity for evaluating an eigenfunction expansion requires
NZNx, where Nx is the number of terms needed in the
expansion and NgNgNx when bandedness is exploited.

Our primary result is the demonstration that extrapo-
lation to remove time-step errors is highly effective when
the error structure of the propagator has only even-order
terms. This result may be applied to the matrix squar-
ing method as well. In that case, the cost of doubling
the number of time slices is simply the cost of repeating
the calculation with one more matrix multiply as com-
pared with the FFT method where doubling the number
of time slices actually doubles the cost. If the matrix
squaring technique is based on a unitary propagator such
as Eq. (3), and the propagator is discretized so that the
matrix retains that unitarity, then extrapolation will be
very cost effective. We would also point out that the
matrix squaring technique can enjoy the same high order
accuracy in the spatial grid discretization if the construc-
tion of the initial matrix is carried out using a procedure,
for instance Eq. (13), where the trapezoidal rule integra-
tion scheme and Euler-Maclaurin error estimate applies.

In conclusion, we wish to reiterate that the even-order
error structure of the propagator can be utilized by both
real- and imaginary-time integration schemes. This al-
lows many fewer time steps or greatly reduces the er-
ror for a moderate number of time steps. Our atten-
tion was originally drawn to this problem by De Raedt
and Michielsen [1], who integrated the Schrodinger equa-
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tion forward in real time to calculate quantum scattering.
That work utilized a result of Suzuki [7] that combined
forward and backward time integrations to make the er-
ror of a single composite time step fifth order, hence the
total error proportional to 1/N%. We believe that our
method could be used to produce higher-order real-time
propagators. However, extrapolations like Eq. (5) pro-
duce a propagator that does not in general satisfy the uni-
tarity condition. The violations of the unitary condition
is, however, of the same order as the error. This means
that our results may require the errors to be extrapo-
lated to high precision to maintain stability for real-time
propagations. This is similar to the Tchebychev method
[2], which uses a polynomial approximation to the prop-
agator exp(—HAT). This method is also not unitary but
the errors and the violation of unitarity are of the same
order in A7 as the order of the highest polynomial.

As our final observation, we note that the extrapola-
tion procedure need not be applied directly to the calcula-
tion of an accurate propagator. Some techniques, such as
Monte Carlo, do not employ a tabulated representation
of the propagator. In such instances, the extrapolation
scheme can be used much like standard finite-size scaling
methods.
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